Regional differences in the decay kinetics of GABA(A) receptor-mediated miniature IPSCs in the dorsal horn of the rat spinal cord are determined by mitochondrial transport of cholesterol.

نویسندگان

  • Perrine Inquimbert
  • Jean-Luc Rodeau
  • Rémy Schlichter
چکیده

We examined the possibility of a differential spatial control in the endogenous production of 3alpha5alpha-reduced steroids and its consequences on GABA(A) receptor-mediated miniature IPSCs (mIPSCs) in laminas II and III-IV of the rat spinal cord dorsal horn (DH). Early in postnatal development [younger than postnatal day 8 (P8)], mIPSCs displayed slow decay kinetics in laminas II and III-IV resulting from a continuous local production of 3alpha5alpha-reduced steroids. This was mediated by the tonic activity of the translocator protein of 18 kDa (TSPO), which controls neurosteroid synthesis by regulating the transport of cholesterol across the mitochondrial membrane system. TSPO activity disappeared in laminas III-IV after P8 and was functionally downregulated in lamina II after P15, resulting in a marked reduction of mIPSC duration in these laminas. TSPO-mediated synthesis of 3alpha5alpha-reduced steroids was spatially restricted, because, at P9-P15, when their production was maximal in lamina II, no sign of spillover to laminas III-IV was apparent. Interestingly, after P8, the enzymes necessary for the synthesis of 3alpha5alpha-reduced steroids remained functional in laminas III-IV and could produce such steroids from various precursors or after a single subcutaneous injection of progesterone. Moreover, induction of an acute peripheral inflammation by intraplantar injection of carrageenan, restored a maximal TSPO-mediated neurosteroidogenesis in laminas III-IV. Our results indicate that the decay kinetics of GABA(A) receptor-mediated mIPSCs in the DH of the spinal cord are primarily controlled by 3alpha5alpha-reduced steroids, which can be produced from circulating steroid precursors and/or in a spatially restricted manner by the modulation of the activity of TSPO.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Junctional versus extrajunctional glycine and GABA(A) receptor-mediated IPSCs in identified lamina I neurons of the adult rat spinal cord.

Colocalization of GABA and glycine in synaptic terminals of the superficial dorsal horn raises the question of their relative contribution to inhibition of different classes of neurons in this area. To address this issue, miniature IPSCs (mIPSCs) mediated via GABA(A) receptors (GABA(A)Rs) and glycine receptors (GlyRs) were recorded from identified laminae I-II neurons in adult rat spinal cord s...

متن کامل

Development of GABAergic and glycinergic transmission in the neonatal rat dorsal horn.

Cutaneous spinal sensory transmission appears to lack inhibitory control in the newborn spinal cord, but the properties of GABAergic and glycinergic synapses in the neonatal dorsal horn have not been characterized. Whole-cell patch-clamp recordings from rat superficial dorsal horn neurons in spinal cord slices at postnatal day 0 (P0) to P2, P6-P7, and P13-P14 revealed an age-dependent increase ...

متن کامل

Developmentally Regulated and Shapes GABAA Miniature IPSCs in Lamina II of the Spinal Cord

In lamina II of the spinal dorsal horn, synaptic inhibition mediated by ionotropic GABAA and glycine receptors contributes to the integration of peripheral nociceptive messages. Whole-cell patch-clamp recordings were performed from lamina II neurons in spinal cord slices to study the properties of miniature IPSCs (mIPSCs) mediated by activation of GABAA and glycine receptors in immature ( 30 d)...

متن کامل

Propofol differentially inhibits the release of glutamate, γ-aminobutyric acid and glycine in the spinal dorsal horn of rats

Objective(s): Propofol (2, 6-diisopropylphenol) is an intravenous anesthetic that is commonly used for the general anesthesia. It is well known that the spinal cord is one of the working targets of general anesthesia including propofol. However, there is a lack of investigation of the effects of propofol on spinal dorsal horn which is important for the sensory transmission of nociceptive signal...

متن کامل

Partial peripheral nerve injury promotes a selective loss of GABAergic inhibition in the superficial dorsal horn of the spinal cord.

To clarify whether inhibitory transmission in the superficial dorsal horn of the spinal cord is reduced after peripheral nerve injury, we have studied synaptic transmission in lamina II neurons of an isolated adult rat spinal cord slice preparation after complete sciatic nerve transection (SNT), chronic constriction injury (CCI), or spared nerve injury (SNI). Fast excitatory transmission remain...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 28 13  شماره 

صفحات  -

تاریخ انتشار 2008